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M. H. M. Groot1, R. G. Bogotá1,2, L. J. Lourens3, H. Hooghiemstra1, M. Vriend1,†,
J. C. Berrio4, E. Tuenter5, J. van der Plicht6, B. van Geel1, M. Ziegler3,
S. L. Weber3, A. Betancourt1, L. Contreras1, S. Gaviria7, C. Giraldo1,
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Abstract

Tropical montane biome migration patterns in the northern Andes are found to be cou-
pled to glacial-induced mean annual temperature (MAT) changes; however, the accu-
racy and resolution of current records are insufficient to fully explore their magnitude
and rates of change. Here we present a ∼60-year resolution pollen record over the5

past 284 000 years from Lake Fúquene (5◦ N) in Colombia. This record shows rapid
and extreme MAT changes at 2540 m elevation of up to 10±2 ◦C within a few hundred
of years that concur with the ∼100 and 41-kyr (obliquity) paced glacial cycles and North
Atlantic abrupt climatic events as documented in ice cores and marine sediments. Us-
ing transient climate modelling experiments we demonstrate that insolation-controlled10

ice volume and greenhouse gasses are the major forcing agents causing the orbital
MAT changes, but that the model simulations significantly underestimate changes in
lapse rates and local hydrology and vegetation feedbacks within the studied region
due to its low spatial resolution.

1 Introduction15

Long and high-resolution records of climate change are mainly inferred from ice cores
of Greenland and Antarctica (GRIP-Members, 1993; Grootes et al., 1993; Jouzel et
al., 2007; NGRIP-Members, 2004; Parrenin et al., 2007; Svensson et al., 2008), ma-
rine sediments (Bond et al., 1993; Martrat et al., 2007; Peterson et al., 2000), and
speleothems (Cheng et al., 2009; Wang et al., 2008). High altitude regions in the trop-20

ics on the other hand appear to be particularly sensitive to current climate changes
(Urrutia and Vuille, 2009) and are therefore ideally suited to investigate the environ-
mental response (i.e. glaciations, hydrology and ecosystem integrity) to pCO2 and
glacial-induced ice volume variations rather than their surrounding lowlands. These
high altitude tropical settings lack, however, the necessary high-resolution and accu-25

rate records to fully explore the operating mechanisms of the Earth’s climate system.
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Here we elaborate on previous investigations (Hooghiemstra, 1984; Mommersteeg,
1998; Torres et al., 2005; Van der Hammen, 1974; Van der Hammen and González,
1960; van Geel and van der Hammen, 1973; Wille et al., 2001) by establishing an ultra-
high resolution (i.e. ∼60 year between 4646 time slices) pollen-based record of climate
change from Lake Fúquene in the Eastern Cordillera of Colombia (5◦28′ N, 73◦45′ W,5

2540 m), which may compete in accuracy with the data collected from the ice cores,
speleothems and marine sediments.

The modern precipitation regime at Lake Fúquene (Fig. 1) is controlled by the an-
nual migration of the inter tropical convergence zone (ITCZ) causing two dry seasons
(December to February and from June to August) and two rainy seasons (March to10

May and from September to November). The seasonal temperature cycle is very weak
with monthly temperatures of 13◦ to 14 ◦C. The daily temperature range is large and
during the dry season night frost may occur (van Geel and van der Hammen, 1973).
At present the lake lies within the Andean forest belt (Fig. 2). The upper boundary of
this belt or upper forest line (UFL) coincides approximately with the 9.5 ◦C mean annual15

isotherm, while the lower boundary is at an elevation where night frost no longer oc-
curs (Hooghiemstra, 1984; Van der Hammen, 1974; Van der Hammen and González,
1960). During glacial conditions, lower temperatures cause a descend in altitudinal po-
sition of individual taxa, leading to a lowering of main vegetation belts (Hooghiemstra,
1984; Van’t Veer and Hooghiemstra, 2000; Van’t Veer et al., 1995; Van der Hammen,20

1974; Van der Hammen and González, 1960; Wille et al., 2001). We will use the
changes in percentages of arboreal pollen (AP%) (Hooghiemstra, 1984; Van der Ham-
men and González, 1960) to resolve the orbital and sub-Milankovitch mean annual
temperature variations at Lake Fúquene over the past 284 000 years. In addition, we
have carried out three transient climate modelling experiments to explore the signifi-25

cance of orbitally induced insolation, pCO2 and glacial-induced ice albedo feedback
mechanisms on the reconstructed temperature variations.
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2 Material and methods

2.1 Sediment cores

Two ∼60 m long sediment cores, Fúquene-9 (Fq-9) and Fúquene-10 (Fq-10) were re-
trieved from Lake Fúquene, using a floating platform with Longyear drilling equipment
of Gavesa Drilling Co. Bogotá. Consolidated sediments were first approached at c. 6 m5

below the water surface. Sediments were retrieved in segments of 100 cm length with
a diameter of 75 mm. Core samples at the two drilling sites were collected with 50 cm
overlapping depth intervals to maximize sediment recovery (Table 1). Undisturbed
sediments in pvc-tubes were directly transported by air freight to The Netherlands for
further treatment. The fresh sediment surface was photographed in a standardized10

photographic room. The two cores were transported to the NIOZ laboratory (Texel,
The Netherlands) to obtain along the full length of both cores XRF-based geochemi-
cal data. Subsequently the cores were transported to the University of Amsterdam for
collecting >5000 samples for pollen and grain size analysis. Grain size analysis was
carried out at the Vrije Universiteit Amsterdam.15

2.2 Analytical methods

Bulk chemistry was measured with an Avaatech X-ray fluorescence (XRF) core scan-
ner at the Royal Netherlands Institute for Sea Research (NIOZ). The XRF core cortex-
scanner counts the number of the chemical elements aluminum (Al, atomic number 13)
to bismuth (Bi, atomic number 83) per second (cps) directly at the surface of a split sed-20

iment core, a measurement which is proportional to chemical concentrations (Jansen
et al., 1998). Prior to the measurement, the split core surface was smoothed horizon-
tally without contaminating sediment surface. Subsequently the surface was covered
with a 4 µm thin SPEXCerti Prep Ultralene foil to avoid contamination of the X-ray unit
during measurement and to avoid desiccation of the sediment. Air bubbles under the25

foil were carefully removed. Measurements were carried out at 1 cm increments along
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the full length of the 60 m long cores. We used generator settings of 10 kV and 30 kV
and measurement time was 30 s per cm. The standard procedure included a con-
trol measurement with a standard after every 1 m core interval. Further technical and
practical details about the XRF core scanner are described in Richter et al. (2006).

2.3 Pollen analysis5

The Fq-9C record was examined at 1 cm increments for a detailed survey of the pa-
lynological content. Pollen samples of 1 cm3 were processed using the standard pre-
treatment including sodium pyrophosphate, acetolysis, and heavy liquid (bromoform)
separation. We counted pollen and spore taxa with specific ecological envelopes and a
clear response to climate change through altitudinal shifts (Hooghiemstra, 1984; Mom-10

mersteeg, 1998; Torres et al., 2005; Van’t Veer and Hooghiemstra, 2000; Van der
Hammen and González, 1960; Wille et al., 2001). Pollen types were assigned to the
following ecological groups: (1) taxa of subandean forest, (2) taxa of Andean forest,
(3) taxa of subpáramo vegetation, (4) taxa of grasspáramo vegetation and (5) taxa in-
dicating dry conditions. Down core changes in the relative contribution of the pollen15

types in these ecological groups reflect altitudinal shifts of the main ecological groups.
Following Van der Hammen and González (1960) and Hooghiemstra (1984) AP% were
used to estimate the position of UFL along the record.

3 Results

3.1 Composite section20

Cores Fq-9 and Fq-10 were used to build a composite record (Fq-9C) with a minimal
number of gaps in the sedimentary sequence. Down core changes in the lithology
represent the first information for this exercise. Distinct and repetitive layers with peat,
and intervals with higher concentrations of aeolian dispersed fine grained volcanic ash
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allowed an adequate first correlation between cores. Subsequently, we used records of
Fe and Zr obtained by X-ray fluorescence at 1 cm distance over the full length of both
cores to fine tune the correlation. Selection of iron (Fe) and zircon (Zr) out of the suite
of measured elements is justified by their physical and chemical properties. During
XRF measurements heavier elements (Fe and Zr) remain relatively unaffected by the5

variation of physical properties along the core. In addition, Fe and Zr content may be
indicative of variations in source areas and/or variations in sedimentary environments.
It is to be expected that changes in both variables coincide simultaneously within the
two parallel cores. For instance, Fe supply to the Fúquene basin may be associated
with airborne volcanic ash. Ash layers have a distinct yellow color due to neo-formed10

siderite (FeCO3) (Sarmiento et al., 2008). The Fe content may also be influenced
by changes in the redox state of the water column as well as the sediment columns
(Davidson, 1993). The latter may be associated with lake level changes which cause
alternations between submersed lacustrine environments to shallow swampy condi-
tions, and even to a drained status of the lake. Zircon is a conservative element and15

relatively resistant to chemical weathering processes (Balan et al., 2001). Zircon is
found as detrital grains in igneous, metamorphic, and sedimentary rocks. The zircon
content is positively correlated with weight percent of coarse silt plus sand (Alfonso et
al., 2006; Nyakairu and Koeberl, 2002; Stiles et al., 2003). Therefore, Zr may reflect
high energetic sedimentary environments mostly coinciding with a proximal sediment20

source in relation to the drilling location of the cores.
Core Fq-9 had the least technical drilling artifacts and was therefore used as the

backbone for our study. This implies that the depth of Fq-10 was adjusted so that the
patterns of the various proxy records from both cores aligned. The procedure was
carried out as follows: (1) High resolution photographs of the freshly split sediment25

cores and binocular-based lithological descriptions (Sarmiento et al., 2008) were used
to obtain an initial framework of stratigraphic correlation. (2) Time series of Fe and
Zr content of Fq-9 and Fq-10 were visually matched using Analyseries 1.2 software
(Paillard et al., 1996). Tie points were preferably chosen at the steepest parts of the
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curves; occasionally maxima or minima were used (Table 2). The matched records
were compared with the initial stratigraphic framework. (3) The procedure described in
points (1) and (2) was repeated until all paired proxy records, e.g. Fe, showed compara-
ble variation at any given depth. (4) No adjustments, such as squeezing and stretching
were introduced within core segments. All core segments of Fq-10 were depth-shifted5

and stratigraphically aligned relative to the Fq-9 core segments. Subsequently, a final
composite core was built where inclusion of disturbed intervals and sediment gaps was
minimized (Table 3).

The composite core was labeled as Fq-9C and represents 90% of the sediment infill
of the uppermost 60 m of the Fúquene Basin. Average lateral offset between strati-10

graphic layers was 52 cm (Fig. 3). Offsets between cores may reflect difference in
sedimentation rates, erosion, and methane emissions during the drilling procedure.
Sediments between 26 and 21 m contain significant proportions of organic matter. In-
terval 22 to 20.8 m reflects compressed peat. This 5 m of sediments contained over
pressured methane which escaped from the borehole when the corer contacted this15

reservoir at 21 m depth. For safety reasons drilling activities were laid down during a
full day until sediments dissipated (GAVESA, 2002). The escape of methane and sub-
sequent compaction of the peat explains the significant change in offset between both
cores in this core interval (Fig. 3). The lake surface was used as a reference. During
the 5 weeks long drilling operation, lake-level changes were noticed after periods of20

heavy rains. As a consequence the offset between the zero calibration points of cores
Fq-9 and Fq-10 is estimated offset up to 20 cm.

3.2 Spectral analysis

The AP% of Fq-9C fluctuates between 2% and 98% with the highest values found
between 21 and 26 mcd and the lowest around 10, 29 and 53 mcd (Fig. 4a). We sub-25

mitted the AP% record to spectral analysis in the depth domain using the CLEAN
algorithm (Roberts et al., 1987), the REDFIT program (Schulz and Mudelsee, 2002)
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and a Blackman-Tukey power spectrum (Blackman and Tuckey, 1958) to identify the
possible imprint of orbital signals.

The CLEAN algorithm was run as a MATLAB routine (Heslop and Dekkers, 2002)
and is particular robust in determine the frequency distribution of unevenly spaced
data series and noisy signals (Baisch and Bokelmann, 1999; Roberts et al., 1987). The5

CLEAN procedure performs a nonlinear deconvolution in the frequency domain in order
to remove any artifacts resulting from incomplete sampling in the time (depth) domain.
It includes a series of Monte Carlo simulations which allow a large number of slightly
different spectra to be generated for a single input signal. The differences between
these spectra are utilized to determine a mean spectrum and confidence intervals both10

for individual frequency peaks and for the spectrum as a whole. Through the use of an
Inverse Fourier Transform of the MC-CLEAN spectrum, the data can be reconstructed
in the time domain, providing a “noise free” version of the input signal. Because of
the large number of data points and the almost equally spaced sampling resolution, we
choose to linearly detrend the AP% depth series and slightly smooth it with a 5 cm aver-15

age to reduce the number of data points from 4868 to 1134 before the CLEAN analysis
(Fig. 4b). The CLEAN spectrum was subsequently determined by adding 10% red
noise (i.e. control parameter=0.1), a clean/gain factor of 0.1, 500 CLEAN iterations,
an interpolation step (dt) value of 5 cm and 500 simulation iterations (Fig. 5a). The re-
sulting spectrum revealed highly significant (99%) peaks at 9.07 and 22.65 m, and less20

significant peaks at 12.58, 5.96, 4.19 and 3.65 m. The 22.65 m periodicity coincides
with the large-scale changes in the AP% record, which we attribute to the imprint of
the late Pleistocene ∼100 kyr glacial rhythm (Hooghiemstra et al., 1993). Accordingly,
the 9.07 m cycle corresponds with a 41-kyr period, indicating a large obliquity control
of the climate variability in this region.25

We evaluated the CLEAN spectral outcome first by comparison with a Blackman-
Tukey power spectrum, which was performed with AnalySeries 2.2 (Paillard et al.,
1996) using 75% of the 200-year interpolated time series, a Parzen window and a Band
Width of 0.0087. Although the power spectrum is much more smoothed, strong peaks
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occur at ∼9 and 25 m; consistent with the CLEAN estimates (Fig. 5b). Secondly, we
applied the computational spectral analysis program, REDFIT version 3.8 (Schulz and
Mudelsee, 2002) on the original (non-smoothed and non-detrended) AP% data set. In
this model a first-order autoregressive progress (AR1), which is assumed to present
a good estimate of the red-noise signature, is estimated directly from the (unevenly5

spaced) time series and, subsequently, transferred into the frequency domain using the
Lomb-Scargel algorithm. Confidence levels based on a χ2 distribution are calculated
from the AR1-noise and from percentiles of the Monte Carlo ensemble. For the analy-
sis, we applied one Welch Overlapped Segment Averaging (WOSA) segment (n50 =1),
2000 Monte Carlo simulations (Nsim = 2000), and a rectangular window (Iwin = 0). This10

resulted in a value of τ of 20.9 with 2 degrees of freedom. The power estimate and
distribution are in good agreement with that of the Blackman-Tukey method, although
an additional peak is found at 1193 cm (Fig. 5b and d). Third, we have run the CLEAN
algorithm again, but in this case, D. Heslop (personal communication, 2009) incorpo-
rated the method of Mudelsee to estimate the AR1 characteristic period of the input15

data series (Mudelsee, 2002). With each iteration step, a new time series is calculated
with the same AR1 characteristics and processed with CLEAN. These spectra are then
used to calculate the confidence levels. This approach is a little different from before,
because the noise is not added to the signal, but studied separately. This implies that
the spectrum for the input data does not have error bounds, because it remains the20

same for each iteration step. Only the separate noise component is changing. The
results are plotted in Fig. 5c and largely confirm the significance of the spectral peaks
obtained from REDFIT.

3.3 Orbital tuning

We extracted the distinct 9 m component of the AP% record using a Gaussian filter25

as implemented in the freeware AnalySeries 2.2 (Paillard et al., 1996). The filtered
frequency was centered at 0.0011±0.0004 (Fig. 4b). The filtered 9 m signal was
subsequently correlated to the filtered obliquity-related 41-kyr component of the LR04
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benthic δ18O record (Lisiecki and Raymo, 2005) to establish an age model for Fq-9C
(Fig. 4c). For this purpose we applied a Gaussian filter centered at a frequency of
0.0245±0.002, and tuned our data by peak-to-low matching of the filtered 9-m signal
of core Fq-9C and the filtered 41-kyr signal in the LR04 record. Extrapolation of the
resulting age model provides an age estimate for the bottom and top of the Fq-9C sed-5

imentary sequence of respectively 284 and 27 kyr before present (ka), and an average
sample resolution of ∼60 yr.

Data from the last 27 kyr of the Fq-2 core (van Geel and van der Hammen, 1973) was
implemented to construct a complete AP% record for the past 284 000 years. Correla-
tions were verified through biostratigraphic events and radiometric carbon dates of the10

Fq-7C core (Hessler et al., 2009; Mommersteeg, 1998). For this purpose we revised
the 14C ages for the Fq-2 and Fq-7C records (Table 4) using the CALIB REV 5.0.2. pro-
gram (Stuiver et al., 2009). Tie points between Fq-2, Fq-7C and Fq-9C were based on
the following biostratigraphic markers: Arboreal Pollen, Alnus, Polylepis-Acaena, Quer-
cus, Myrica, Podocarpus, Asteraceae tubuliflorae, Hypericum (Table 4). Detail compar-15

ison between record Fq-2 and Fq-7C for the upper part of the record showed that the
Younger Dryas is only present in core Fq-2. Therefore, we linked Fq-9C directly to Fq-2
at 27.19 ka to produce the Fúquene Basin Composite record (FqBC), which reach up
to the latest Holocene (Fig. 6).

Correlation to the LR04 δ18Obenthic record was chosen, because this record is used20

as the backbone for many late Pleistocene paleoclimate studies. The LR04 chronology
follows the SPECMAP approach (Imbrie et al., 1984; Imbrie and Imbrie, 1980) in which
the δ18Obenthic record is tuned to a simple ice sheet model that includes a forcing
function (i.e. 21 June insolation curve for 65◦ N), an average ice-sheet response time
and a non-linearity coefficient that describes the slow build-up and fast terminations25

of the ice-sheets. For the past 300 000 years, the LR04 chronology yields time lags
for the obliquity (41-kyr) and precession (23-kyr) components of the δ18Obenthic record
of 7.5±0.8 and 4.5±0.5 kyr, respectively. This implies that also the AP% time series
includes a ∼7.5 kyr time lag for its obliquity-related component, which is supported
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by the compliance between the tuned ages of positions 300 and 353 cm in Fq-9C of
respectively 32.9 and 35.2 ka, and their corresponding corrected radiocarbon ages of
32.54±0.32 and 35.74±0.31 (Fig. 6).

4 Discussion

4.1 Mean annual temperature reconstructions5

Our new record radically improved the temporal resolution of the earlier pollen based
records from the Fúquene Basin with an order of magnitude. The new pollen record
covers the last two glacial cycles with better than centennial resolution. Evidently, the
FqBC depicts the last three glacial terminations, TI −TI I , TIIIa and TIIIb (Fig. 6). Wavelet
analysis reveals highly significant spectral power at the glacial-bound 41 and 113-kyr10

periods, a continuum power distribution in the range of 9–13, 16–19 and 25–32 kyr,
and enhanced power in the ∼8 kyr frequency band at the major terminations (Fig. 7).

From previous altitudinal pollen studies of the tropical Andes, it appeared that
changes in AP% respond quasi-linearly to temperature-driven vertical shifts in the
UFL between 3700 m (the highest mountains at close distance) and the LGM posi-15

tion at ∼2000 m (Hooghiemstra, 1984; Hooghiemstra and Van der Hammen, 1993;
Van’t Veer and Hooghiemstra, 2000; Van der Hammen, 1974; Van der Hammen and
González, 1960; Wille et al., 2001). During the LGM, MAT at Lake Fúquene was ap-
proximately 7.8 ◦C lower than at present (Hooghiemstra, 1984; Hooghiemstra et al.,
1993; Van’t Veer and Hooghiemstra, 2000; Van der Hammen, 1974; Van der Hammen20

and González, 1960; Wille et al., 2001). This pollen based estimate is in good agree-
ment with the 5–9 ◦C decrease derived from the change in snowline along the Eastern
Cordilleras of the central Andes (Klein et al., 1999). In addition, these pollen studies
showed that the LGM lapse rate was much steeper (∼0.76 ◦C/100 m) (Wille et al., 2001)
than today (0.6–0.64 ◦C/100 m) (Florez, 1986). The resulting 3 to 5 ◦C LGM decrease in25

sea surface temperatures (SST) is consistent with the ∼3±1 ◦C lowering derived from
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the Mg/Ca and Uk′

37 – based temperature reconstructions of cores TR163-19 (Lea et
al., 2000) and MD02-2529 (Leduc et al., 2007) in the Equatorial Pacific (Figs. 1 and 6).

Hence, we may use the AP% to provide a good approximation of MAT at Lake
Fúquene through time using the modern to glacial temperature difference. However,
since the AP% record is biased by the destruction of montane forests through inten-5

sive agriculture and soil erosion in the area over the last 3000 years (van Geel and van
der Hammen, 1973), we assigned the AP% of 73±6% at ∼3.1 ka a MAT of 13.5 ◦C,
assuming that MAT remained close to present-day values over the past 3 ka (van Geel
and van der Hammen, 1973). With a mean AP% value of 15±6% at ∼20 ka, this im-
plies that a change in AP% of 10% corresponds with a MAT change of 1.3±0.3 ◦C.10

The estimated standard error of the presented MAT record (Fig. 6) is 0.6±0.4 ◦C, con-
sidering a mean temperature difference between 20 and 3 ka of 7.8 ◦C (Hooghiemstra,
1984; Hooghiemstra et al., 1993; Van’t Veer and Hooghiemstra, 2000; Van der Ham-
men, 1974; Van der Hammen and González, 1960; Wille et al., 2001). The resulting
MAT estimate of 15±1.5 ◦C at 7 ka (early Holocene) is consistent with earlier recon-15

structions (van Geel and van der Hammen, 1973).
Comparison between our reconstructed MAT at Lake Fúquene and the Mg/Ca-

derived SST estimates of core TR163-19 for the last 284 000 years shows that the
temperature variations at high altitudes in the tropical northern Andes are larger and
much more rapid, i.e. up to 10±2 ◦C within a few hundred of years, than reflected in the20

equatorial marine record (Fig. 6). They are slightly smaller in amplitude, although within
error, than the reconstructed continental mean annual air temperature (Tair) variations
between 40 and 80◦ N (Bintanja et al., 2005) and Antarctic temperatures (Jouzel et al.,
2007; Parrenin et al., 2007) (Fig. 6). We obtained a considerable longer duration for
MIS 5.5 (defined by the temperatures above present-day values between 110–133 ka)25

than the marine and polar temperature records (120–132 ka). A longer duration for
MIS 5.5 is, however, in good agreement with the radiometric dated sea level records
(Blanchon et al., 2009; Gallup et al., 2002; Thompson and Goldstein, 2006) during this
period (Fig. 7).
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4.2 Comparison with transient climate modelling experiments

We have performed three transient climate modelling experiments with a GCM of in-
termediate complexity, CLIMBER-2.3 (Petoukhov et al., 2000), over the past 284 ka to
serve an explanation for the MAT record in terms of regional versus globally-induced
temperature variations. For this purpose we used a coupled model of intermediate5

complexity, CLIMBER-2 (version 3) (Petoukhov et al., 2000), that is very suitable for
long transient simulations due to its fast turnaround time (Calov et al., 2005a, b;
Claussen et al., 1999; Tuenter et al., 2005). The model consists of an atmosphere
model, an ocean/sea-ice model and a land/vegetation model. No flux adjustments
are used. The atmospheric model is a 2.5-dimensional statistical-dynamical model10

with a resolution of 10◦ in latitude and approximately 51◦ in longitude. The model
does not resolve synoptic timescales but uses statistical characteristics associated
with ensemble-means of the system. The vertical resolution for the circulation, tem-
perature and humidity is 10 levels and for the radiation 16 levels. The time step is one
day. The terrestrial vegetation model is VECODE (VEgetation COntinuous Description)15

(Brovkin et al., 1997). The model computes the fraction of the potential vegetation (i.e.,
grass, trees and bare soil). This is a continuous function of the annual sum of posi-
tive day-temperatures and the annual precipitation. The computed vegetation changes
affect the land-surface albedo and the hydrological cycle. The time step of VECODE
is one year. The ocean model (Stocker et al., 1992) describes the zonally averaged20

temperature, salinity and velocity for three separate basins (Atlantic, Indian and Pa-
cific oceans). The three basins are connected by the Southern Ocean through which
mass, heat and salt are exchanged. The latitudinal resolution is 2.5◦ and the vertical
resolution is 20 unequal levels. The time step is 5 days. The ocean model includes a
simple thermodynamic sea-ice model that computes the sea-ice fraction and thickness25

for each grid box, with a simple treatment of advection and diffusion of sea-ice. Results
of CLIMBER-2 compare favorably with data of the present day climate (Ganopolski et
al., 1998; Petoukhov et al., 2000) as do the results derived from sensitivity experiments
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(like changes in vegetation cover and solar irradiance) with those of more comprehen-
sive models (Ganopolski and Rahmstorf, 2001).

Three transient simulations were carried out for the interval from 650 ka to present.
Only the results for last 284 ka are discussed here (Fig. 7). The only forcing used in
the EXP O simulation is insolation changes induced by the La04(1,1) orbital parame-5

ters, while the ice sheets volume and CO2 forcing were kept fixed at present-day and
pre-industrial (280 ppmv) values, respectively. In the EXP OI simulation the same or-
bital forcing was used but now varying ice-sheets on the Northern Hemisphere while
in EXP OIG varying ice-sheets were included as well reconstructed changes in atmo-
spheric greenhouse gas concentrations.10

The greenhouse gas concentrations had to be prescribed because CLIMBER-2 does
not contain a carbon cycle model. The used concentrations of CO2 and CH4 (methane)
were mainly obtained from Antarctica ice cores together with other sources for the
recent years. The measurements for 284 ka until the Holocene were taken from Vostok
(Petit et al., 1999). For the Holocene, measurements from EPICA Dome C (Flückinger15

et al., 2002) were used because the sampling frequency is higher than for Vostok.
Finally, for the last 500 years we used values from several sources (Robertson et al.,
2001). The sampling frequencies for both CO2 and CH4 are irregular in time and are
not similar for both gases. We interpolated both records to obtain annual values using
cubic spline interpolation. Because CLIMBER-2 only has a CO2-module and no CH4-20

module, we had to transfer the CH4 record into an equivalent CO2 record assuming
that CH4 is 21 times as effective in absorbing long wave radiation than CO2 (Lashof,
2000).

In addition, our version of CLIMBER-2 does not include an interactive ice-sheet
model, so we had to prescribe the ice fraction and height of the Eurasian and North25

American ice sheet, which are considered to portray the largest ice sheet fluctuations
during the studied time interval. The volumes for the Eurasian and North American
ice sheets were obtained from a simulation with a 3-D ice sheet model (Bintanja et al.,
2005) and translated into ice areas and heights of the ice sheets. For the ice areas
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the ICE-5G ice distribution of the LGM (21 ka) was used as reference (Peltier, 2004)
and set on the spatial grid of CLIMBER-2 (Table 5). Due to a lowered sea level during
the LGM and earlier glacial periods, ice was present on the increased land areas north
of 60◦ N. Since the standard representation of the Earth’s present-day geography in
CLIMBER-2 does not take these larger land areas into account, we have increased5

the size of the land fractions from the northern Eurasian grid boxes for experiments OI
and OIG. A test simulation using the extended land fraction but with present-day ice-
sheet distribution was compared to a standard control run to examine possible climatic
changes due to the modified land-sea distribution. Over the modified grid boxes the
climate changed, but not significantly over the other grid boxes.10

From the simulated volumes the time-varying heights of the American and the
Eurasian ice-sheet was computed as follows: First, we let the Eurasian and American
Ice-sheet have heights Heur and Ham at some central grid boxes while at the surround-
ing grid boxes heights are 0.5×Heur and 0.5×Ham, respectively (Table 5). The volumes
are estimated by multiplying the ice-covered area of an ice-covered grid box and the15

height of the ice-sheet in that grid box, adding the results for all ice-covered grid boxes.
As the volumes are given from the 3-dimensional ice sheet model, Heur and Ham can be
computed. A drawback of this method is that only the height of the ice sheets change
in time while the areas of the ice-sheets are fixed. Variations in height affect changes
the atmospheric circulation, which results in climate variations especially above and to20

the East (i.e., downstream) of the ice-sheets. For the Fúquene area it is most likely
that variations in albedo due to variations in ice-sheet area are more important than
variations in height, because albedo variations directly affect the climate response to
insolation variations. In order to let the area vary during the simulations, we instantly
lowered the ice-fraction by 0.25 if Heur or Ham becomes less than 1000 m and again25

by 0.25 for heights lower than 500, 100 and 10 m.
During the (prescribed) waxing and waning of the ice sheets there is no transport of

water from the oceans to the ice sheets and vice versa, i.e., the sea-level in the model
does not change during glacial cycles. For all simulations the height and surface area
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of Greenland and Antarctica as well as small glaciers were kept at present-day val-
ues. All three simulations have been carried out with the coupled atmosphere-ocean-
vegetation model. The influence of interactive vegetation on the transient behavior of
climate is described elsewhere (Tuenter et al., 2005). The initial states were obtained
by performing a 5 kyr equilibrium run using the boundary conditions for 650 ka. The5

results are shown as averages over 100 yr as the periods of the oscillations of the or-
bital forcing and variations in ice-sheet volume and greenhouse gas concentration are
much longer than 100 yr.

EXP O revealed only small temperature differences of less than ∼0.8 ◦ C, which os-
cillate primarily on a precession frequency (Fig. 7). A direct influence of orbital-induced10

insolation changes can therefore not explain the reconstructed large MAT shifts, which
is in line with the absence of a distinct precession-related signal in the AP% record
of Lake Fúquene. EXP OI clearly illustrates that ice volume changes largely control
the MAT at ∼2.5 km altitude in the tropical Andes, but alone they are insufficient to ex-
plain the whole magnitude of the MAT changes at Lake Fúquene (Fig. 7). Evidently,15

the modelled MAT compares much better with our data when greenhouse gas forcing
(EXP OIG) is added. This supports recent modelling studies (Urrutia and Vuille, 2009),
which project large changes in South American (sub)alpine climates by the end of the
21st century due to enhanced anthropogenic greenhouse gas emissions. However,
the simulated glacial-interglacial MAT changes of 3 to 4 ◦C still significantly underes-20

timate the reconstructed variations at Lake Fúquene (Fig. 7). Part of this discrep-
ancy can be explained by the large divergence between simulated glacial-interglacial
changes in lapse rate of less than 0.005 ◦C/100 m, and the reconstructed change in
lapse rate of up to ∼0.3 ◦C/100 m. Another important factor in controlling this offset
is the low spatial resolution of CLIMBER, which excludes to resolve specific changes25

in the local hydrology and vegetation feedbacks within the studied region. Finally, our
CLIMBER-2 runs strongly underestimate the sub-Milankovitch and millennial scale vari-
ability (i.e.<11 kyr), which clearly affected the MAT at the lake.
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4.3 Correlation between land and ice records of climate change

The sub-Milankovitch MAT variability at Lake Fúquene appears one-to-one coupled
to the millennial scale changes reflected in the Antarctica (deuterium) and Green-
land (δ18O) temperature records (Fig. 8). In particular, the signature of the Younger
Dryas, constrained by 14C dates, and the interstadial Dansgaard-Oeschger (DO) cy-5

cles 1 (Bølling-Allerød), 8, 12, 14, 19 and 20 suggest an unprecedented North Atlantic-
equatorial link. In addition, the short interval with low MAT during MIS 5.5 and the
rapid MAT changes during the penultimate glacial period and Termination II mirrors the
Greenland Ice Core Project (GRIP) δ18O record (GRIP-Members, 1993). However, the
lower part of the GRIP core is suspect to disturbance, since it shows a different pat-10

tern than the one found in the North Greenland Ice Core Project (NGRIP) (Svensson
et al., 2008; NGRIP Members, 2004) and the nearby Greenland Ice Sheet Program 2
(GISP2) (Grootes et al., 1993), although gas measurements suggest that it contains
ice of the last interglacial and penultimate glacial maximum (Landais et al., 2003). The
North Greenland Eemian Ice Core Drilling Project (NEEM) may decipher the robust-15

ness of this correlation.
At present, we consider that the age constraints of our MAT record are not accurate

enough to determine the exact phase relationship with the North Atlantic cold events:
i.e. the warm events appear also closely linked to the inferred Antarctic Isotope Max-
imum (AIM) (Members, 2006) (Fig. 8). It is tempting, however, to link maximum MAT20

conditions at Lake Fúquene to interstadial periods, because palynological investiga-
tions of the Cariaco Basin off northern Venezuela (Fig. 1) revealed the highest pollen
concentrations and the maximum extend of semi-deciduous and evergreen forests in
the northernmost part of South America occurred during these times (González et al.,
2008). During stadials, the region around the Cariaco Basin is characterized by in-25

creases of salt marshes, herbs, and montane forests, while during Heinrich (H) events,
periods of massive ice rafting in the North Atlantic (Broecker, 1994), forest abundance
decreased (González et al., 2008). It has been proposed that during these events, a
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reduced Atlantic meridional overturning circulation resulted in extreme winter cooling
of the North Atlantic (Cheng et al., 2006; Denton et al., 2005). Through an atmospheric
connection, the ITCZ was, probably also with a winter bias (Ziegler et al., 2008), shifted
to a more southern position (Cane and Clement, 1999; Chiang et al., 2003; Clement
and Peterson, 2008; Peterson et al., 2000), and causing wetter climate conditions in5

the north-eastern part of Brazil and the Bolivian Altiplano (Baker et al., 2001; Wang et
al., 2004). A comparison with a detailed record of North Atlantic, C37:4 alkenone record
of the Iberian Margin (Martrat et al., 2007), shows that in particular during H1-2 and H6
Lake Fúquene was affected by the lowest MAT (Fig. 8).

5 Conclusions10

A strong one-to-one coupling between tropical and the North Atlantic climate variability
on orbital and millennial time scales is found based on a new ultra-high resolution
pollen record from the Fúquene Basin in the northern Andes. Using climate modeling
experiments, we have shown that the large-scale, orbital-induced vegetation changes
can be explained by the ∼100 kyr and obliquity (41 kyr) dominated glacial-interglacial15

global temperature variations and changes in greenhouse gas forcing. Besides, our
study has revealed that (sub)alpine climates in the northern Andes and associated
ecosystems react very sensitive (rapid) on global climate change, thereby supporting
modelling studies of future climate change (Urrutia and Vuille, 2009).
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I., Steffensen, J. P., and Vinther, B. M.: A 60 000 year Greenland stratigraphic ice core
chronology, Clim. Past, 4, 47–57, doi:10.5194/cp-4-47-2008, 2008.

Thompson, W. G. and Goldstein, S. L.: A radiometric calibration of the SPECMAP timescale,
Quarternary Sci. Rev., 25, 3207–3215, 2006.

Torres, V., Vandenberghe, J., and Hooghiemstra, H.: An environmental reconstruction of the30
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Table 1. Core sections (depth in cm) of Fúquene-9 and Fúquene-10.

Fúquene-9 Fúquene-10 Fúquene-9 Fúquene-10

6799–6702 3259–3161
6644–6546 3199–3101
6499–6402 3140–3041
6379–6282 3079–2981
6259–6162 3019–2921

6199–6100 2959–2861
6139–6043 2899–2802

6079–5981 2838–2742
6019–5922 2779–2681

5960–5861 2719–2620
5899–5801 2649–2556

5839–5741 2599–2501
5778–5681 2539–2441

5719–5621 2479–2381
5659–5561 2419–2321

5599–5501 2359–2261
5538-5441 2299–2201

5479-5380 2239-2146
5415–5321 2179–2083

5350–5261 2119–2021
5299–5202 2059–1965

5239–5163 1999–1901
5179–5082 1939–1841

5119–5020 1879–1781
5059–4962 1819–1721

4999–4901 1759–1661
4939–4842 1698–1601

4878–4781 1639–1541
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Table 1. Continued.

Fúquene-9 Fúquene-10 Fúquene-9 Fúquene-10

4819–4721 1579–1480
4758–4660 1519–1421

4699-4600 1459–1361
4639–4541 1399–1301

4579-4481 1339–1241
4521–4422 1279–1181

4459–4360 1219–1121
4399–4301 1159–1061

4339–4241 1099–1001
4279–4181 1039–941

4216–4122 970–880
4159–4061 919–821

4099–4001 859–760
4038–3941 799–701

3949–3879 739–641
3919–3820 679–580

3859–3761 619–521
3798–3701 559–460

3738–3641 499–401
3679–3582 439–341

3619–3521 379–280
3559–3461 318–220

3499–3400 259–160
3439–3341 199–167

3378-3281 140–100
3319–3220
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Table 2. Tie points between Fúquene-9 and Fúquene-10.

Fq-10 depth (cm) Fq-9 depth (cm) Offset (cm)

169 108 61
257 196 61
378 318 60
499 437 62
737 669 68
858 793 65
969 899 70

1338 1255 83
1458 1368 90
1578 1475 103
1698 1587 111
1818 1742 76
2297 2212 85
2370 2279 91
2418 2367 51
2537 2522 15
2648 2695 −47
2778 2803 −25
2898 2915 −17
3018 3065 −47
3139 3170 −31
3257 3286 −29
3377 3418 −41
3498 3543 −45
3618 3649 −31
3738 3768 −30
3858 3895 −37
3948 3992 −44
4097 4145 −48
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Table 2. Continued.

Fq-10 depth (cm) Fq-9 depth (cm) Offset (cm)

4213 4260 −47
4338 4374 −36
4457 4492 −35
4578 4614 −36
4697 4742 −45
4817 4871 −54
4938 4970 −32
5057 5092 −35
5297 5327 −30
5324 5369 −45
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Table 3. Selected intervals used to construct the Fúquene-9 composite record.

Fq-9 Fq-10 Fq-10 Fq-9 Fq-10 Fq-10
Depth (cm) Depth (cm) drilling depth Depth (cm) Depth (cm) drilling depth

6000–5982 2719–2620
5959–5866 2599–2516
5839–5824 2515–2480 2530–2495

5823–5736 5778–5691 2479–2381
5719–5622 2359–2269
5599–5584 2268–2240 2359–2331

5583–5489 5538–5444 2239–2146
5479–5461 2119–2090

5460–5370 5415–5325 2083–2021
5350–5329 1999–1901

5328–5235 5298–5205 1879–1819
5208–5114 5178–5084 1816–1795 1901–1880
5094–5001 5059–4966 1794–1781
4971–4878 4939–4846 1758–1695
4873–4780 4819–4726 1694–1645 1770–1721

4758–4744 1639–1571
4743–4645 4698–4600 1570–1490 1681–1601

4639–4615 1489–1470
4614–4521 4578–4485 1469–1389 1572–1492

4520–4426 1388–1369
4425–4400 4390–4365 1368–1280 1458–1370

4399–4312 1278–1257
4278–4245 1256–1160 1339–1243

4244–4170 4197–4123 1158–1062
4158–4065 1061–1039 1144–1122

4064–4049 4016–4001 1038–941
4037–3994 899–810 969–880

3993–3923 3949–3879 799–739
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Table 3. Continued.

Fq-9 Fq-10 Fq-10 Fq-9 Fq-10 Fq-10
Depth (cm) Depth (cm) drilling depth Depth (cm) Depth (cm) drilling depth

3919–3896 738–695 803–760
3895–3799 3858–3762 679–580
3768–3679 3738–3649 558–460

3678–3596 437–339 499–401
3595–3564 3564–3533 319–227 379–287

3558–3499 199–167
3498–3450 3453–3405

3438–3342
3318–3260

3259–3199 3230–3170
3198–3104
3077–2981
2958–2861

2860–2838 2843–2821
2837–2742

Core depth of Fúquene-9 are according to the original depth intervals. Core depth of Fúquene-10 are shown as their

original depth intervals and the new depth intervals after correlating the cores.
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Table 4. Tie points between Fq-2, Fq-7C and Fq-9C.

Depth (cm) Age tie points Reference
Fq-7C

280.00 2.00 Revised 14C age from Fq-7C
349.00 6.890 Revised 14C age from Fq-7C
403.00 7.890 Revised 14C age from Fq-7C
448.00 8.570 Revised 14C age from Fq-7C
467.00 8.620 Revised 14C age from Fq-7C
481.00 8.680 Revised 14C age from Fq-7C
491.00 8.950 Revised 14C age from Fq-7C
504.00 9.600 Revised 14C age from Fq-7C
521.00 15.500 Revised 14C age from Fq-7C
543.00 17.000 Revised 14C age from Fq-7C
651.00 21.300 Revised 14C age from Fq-7C
699.00 23.650 Revised 14C age from Fq-7C
915.00 35.074 Matching maxima in AP (related to maxima in Alnus,

Quercus and Podocarpus) between Fq-9C and Fq-7C

1205.00 53.375 Matching maxima in AP (related to maxima in Alnus,
Myrica and Quercus) between Fq-9C and Fq-7C

1530.00 70.071 Matching maxima in AP (related to maxima in Quercus)
between Fq-9C and Fq-7C

Depth (cm) Age tie points Reference
Fq-2

6.25 0.00 Revised 14C age from Fq-2
320.00 6.78 Revised 14C age from Fq-2
385.00 8.47 Revised 14C age from Fq-2
465.00 10.90 Revised 14C age from Fq-2
490.00 12.80 Revised 14C age from Fq-2
508.00 13.55 Revised 14C age from Fq-2
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Table 5. Ice areas and ice heights.

Gridbox American Land Ice Height
Icesheet fraction fraction (in Ham)

160◦ W–110◦ W; 60◦ N–70◦ N 1 0.5 0.5
160◦ W–110◦ W; 50◦ N–60◦ N 0.2 1 0.5
110◦ W–60◦ W; 70◦ N–80◦ N 0.7 1 0.5
110◦ W–60◦ W; 60◦ N–70◦ N 0.7 1 1
110◦ W–60◦ W; 50◦ N–60◦ N 1 1 1
110◦ W–60◦ W; 40◦ N–50◦ N 1 0.5 0.5

Gridbox Eurasian Land Ice Height
Icesheet fraction fraction (in Heur)

10◦ W–40◦ E; 70◦ N–80◦ N 0.9 1 1
10◦ W–40◦ E; 60◦ N–70◦ N 0.9 1 1
10◦ W–40◦ E; 50◦ N–60◦ N 1 0.5 0.5
40◦ E–90◦ E; 70◦ N–80◦ N 0.9 1 1
40◦ E–90◦ E; 60◦ N–70◦ N 1 0.5 1
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Fig. 1. Current annual mean sea surface temperature (SST) (Locarnini et al., 2006) and gen-
eralized position of the inter tropical convergence zone (ITCZ) during March and September.
Location of sites: Lake Fúquene (5◦28′ N, 73◦45′ W; 2580 m a.s.l. – above sea-level, Colombia),
TR163-19 (2◦15.5′ N, 90◦57.1′ W; 2348 m water depth, equatorial Pacific) (Lea et al., 2000),
MD03-2622 (10◦42.69′ N, 65◦10.15′ W; 877 m water depth, Cariaco Basin) (González et al.,
2008), Brazilian speleothem (10◦10′ S, 40◦50′ W; 500 m a.s.l.) (Wang et al., 2004), and Bolivian
Altiplano (20◦14.97′ S, 67◦30.03′ W; 3653 m a.s.l.) (Baker et al., 2001).
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Figure 2

Fig. 2. Distribution pattern of source areas of pollen taxa during full glacial conditions and
modern (interglacial) times.
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Figure 3

Fig. 3. Graph of downcore changes in the offset between core Fúquene-9 and Fúquene-10.
Blue ellipses represent the tie points as indicated in Table 2. Gaps between vertical red lines
represent mineral-rich sediments.
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Fig. 4. The AP% data series of core Fq-9C plotted on a depth scale. (A) Raw data. (B) De-
trended and interpolated depth series overlain by a Gaussian filter centered at 0.0011±0.0004
(i.e., ∼9 m component). (C) Correlation of the 41-kyr related component in the AP% depth se-
ries of core Fq-9C to that of the LR04 benthic oxygen isotope stack (see text for explanations
and references).
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Fig. 5. Spectral analysis results of the AP% data series of core Fq-9C. (A) CLEAN.
(B) Blackman-Tukey. (C) CLEAN (emended). (D) REDFIT (see text for explanations and refer-
ences).
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Fig. 6. Comparison of mean annual temperature (MAT) changes at Lake Fúquene with other
records. (A) LR04 benthic δ18O stack (Lisiecki and Raymo, 2005). (B) Modeled NH air temper-
atures (Bintanja et al., 2005). (C) AP%-based MAT at Lake Fúquene. (D) The deuterium-based
temperature record of Epica Dome C (Jouzel et al., 2007; Parrenin et al., 2007). (E) Mg/Ca-
derived sea surface temperature (SST) record of TR163-19 (Lea et al., 2000). The numbers
in (A) indicate Marine Isotope Stages. Brown shaded area in (C) represents deforestation
interval.
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Fig. 7. Wavelet analysis of the Lake Fúquene arboreal pollen percentages (AP%) record (A)
and comparison between the reconstructed (B) and modeled (C) mean annual temperatures
(MAT) at Lake Fúquene. Red dotted line in (B) indicates 10 kyr moving average, while the blue
dotted represents the radioisotopical dated coral-based sea level reconstructions (Thompson
and Goldstein, 2006).
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Fig. 8. Comparison between the reconstructed mean annual temperatures (MAT) at Lake
Fúquene and the combined Greenland δ18O ice core records for the past 180 000 years (GRIP-
Members, 1993) and temperature record of Epica Dome C (Jouzel et al., 2007; Parrenin et
al., 2007). The DO numbers indicate Dansgaard-Oeschger cycles and AIM are the Antarctic
Isotope Maxima (AIM). H1-H6 corresponds to the Heinrich events. BA=Bølling-Allerød in-
terstadial and YD=Younger Dryas. The combined Greenland δ18O record includes (1) the
Greenland Ice Core Chronology 2005 (GICC05) (NGRIP Members, 2004) based on annual
layer counting for the past 60 ka, (2) the original NGRIP data (NGRIP Members, 2004; Svens-
son et al., 2008) between 60 and 103 ka, and (3) the data of GRIP below 103 ka.
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